MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 5-SOLUTIONS

Problem 1 (40 points). Let $D \subset \mathbb{R}$ be a domain of functions f and g, and $x \in D$. Show directly that if f and g are continuous at x, then $f+g$ is continuous at x. Do not use any theorems, use the $\varepsilon-\delta$ definition of continuity.
Solution. Fix $\varepsilon>0$. Since f and g are continuous at x, there exist constants $\delta_{1}, \delta_{2}>0$ such that if $|x-y|<\delta_{1}$, then $|f(x)-f(y)|<\varepsilon / 2$ and if $|x-y|<\delta_{2}$, then $|g(x)-g(y)|<\varepsilon / 2$. Set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then if $|x-y|<\delta$, we have the conclusion of continuity for both f and g. In particular:

$$
|(f(x)+g(x))-(f(y)+g(y))| \leq|f(x)-f(y)|+|g(x)-g(y)|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Problem 2 (20 points). Prove or find a counterexample: if $I=(a, b) \subset \mathbb{R}$ is an open interval and $f: I \rightarrow \mathbb{R}$ is a continuous function, then the image of f is an open interval.

Solution. The statement is false Let $I=(-1,1)$ and f be defined by $f(x)=x^{2}$. Then the image of f on the domain I is $[0,1)$, which is not a closed interval.
Problem 3 (40 points). Let f and g be functions defined on the open interval $(-1,1)$, and assume that f and g are continuous at 0 . Show that the function h defined by

$$
h(x):=\max \{f(x), g(x)\}
$$

is continuous at 0 .
Solution. We prove continuity in three cases.
Case 1: $f(0)>g(0)$. In this case, we claim that there exists $\delta>0$ such that if $|x|<\delta$, then $h(x)=f(x)$. Since f is continuous at 0 , and h agrees with f on a neighborhood of $0, h$ will also be continuous at 0 . We now show the claim. Define $\varepsilon=f(0)-g(0)>0$. Since both f and g are continuous at 0 . there exists $\delta>0$ such that if $|x|<\delta$, then $|f(x)-f(0)|<\varepsilon / 2$ and $|g(x)-g(0)|<\varepsilon / 2$. In particular, by the reverse triangle inequality
$f(x)-g(x)=(f(x)-f(0))+(f(0)-g(0))+(g(0)-g(x)) \geq(f(0)-g(0))-\varepsilon / 2-\varepsilon / 2>\varepsilon-\varepsilon=0$.
Case 2: $g(0)>f(0)$. This case is completely symmetric with the previous case, interchanging f and g.
Case 3: $g(0)=f(0)$. In this case, we prove continuity directly. Let $\varepsilon>0$. Then since both f and g are continuous at 0 , there exists $\delta>0$ such that if $|x|<\delta,|f(x)-f(0)|<\varepsilon$ and $|g(x)-g(0)|<\varepsilon$. Then if $|x|<\delta$, by definition of h, either $h(x)=f(x)$ or $h(x)=g(x)$. Since $h(0)=f(0)=g(0)$, we get that $|h(x)-h(0)|<\varepsilon$.

